Mark schemes

1.

Materials

(a) correctly deduces extension is 2.6 or 2.7 mm \checkmark

Should see $AC^2 = 1.50^2 + (6.34 \times 10^{-2})^2$; (new) AC = 1.50134; Extension of AC = (1.50134 - 1.50 =) 0.00134 m or 1.34 mm; and then doubles this Final value must be to at least 2 sf

(b) evidence of correct working: ✓

$$\sin \theta = \frac{6.34 \times 10^{-2}}{\text{their new AC}}$$
 or $\theta = 2.42^{\circ}$ seen

OR

 $W = 2T \sin \theta$ seen

OR

suitable vector diagram with θ labelled

tension correctly calculated from $\frac{1.0}{2 \times \text{their sin}\theta} \checkmark$ For $_1 \checkmark$ acceptable diagrams are shown below

Correct final answer of 11.8 N or 12 N earns both marks

(c) <u>ruled</u> best-fit line between first and sixth points;

line must pass above 2nd point

and

must pass below 4^{th} point $\sqrt{4}$ for $\sqrt{4}$ withhold mark if line is thick, faint or discontinuous

gradient calculated from $\frac{\Delta(W/y)}{\Delta y^2}$ with $\Delta y^2 \ge 0.004_2 \checkmark$ (gradient ~ 3850) for $_2\checkmark$ condone read off errors of ± 1 division for $_3\checkmark$ note that $1.50^3 = 3.375$ so allow sub of 3.38 for $_4\checkmark$ reject 2 sf 1.2×10^{11}

evidence of using E = $\frac{\text{their gradient} \times 1.50^3}{1.11 \times 10^{-7}} \sqrt[3]{}$ for $\sqrt[3]{}$ note that $1.50^3 = 3.375$ so allow sub of 3.38

E in range 1.10×10^{11} to 1.24×10^{11} (Pa) $_4\checkmark$ for $_4\checkmark$ reject 2 sf 1.2×10^{11}

(d) kg s⁻² √

no credit for N m ⁻¹
correct answer only

mg∆L

FρĽ m∆L

3.

2.

A

А

4. (a)

37.8 **√** CAO

(b) <u>random</u> (error)

condone 'statistical' 🗸

the following are neutral: 'parallax' / 'human (error)' / '(some) results are anomalous' 4

1

[8]

[1]

[1]

Materials

(c) advantage (of using thinner beam):

(same load produces) larger (values of) s or wtte 1 \checkmark

so

the percentage uncertainty / error (in s) is reduced 2 \checkmark

for 1√ accept 'beam bends / deflects more' 'beam extends more' / 'easier to bend' are neutral for 2√ the following are neutral: 'easier to make readings' / 'values (of s) are more accurate' / 'more precise' / 'less mass needed' / 'wider range of readings'

disadvantage (of beam bending more):

idea that beam may undergo plastic deformation 3

so

the graph will be non-linear / curve or wtte 4√

or

beam 'may break' / 'slip off knife edges' **and** relevant comment about safety / health / hazard / 'cannot get unload data'

or

reduces range of *m* or wtte **and** relevant comment about the effect on the graph, eg increase scatter $34\sqrt{} = 1 \text{ MAX}$

for 3 ✓ accept / 'beam may become permanently deformed' or wtte / 'necking may occur' / 'hysteresis may occur' / 'beam can reach (go past) elastic limit' the following are neutral: 'causes systematic error' / 'beam may go past limit of

proportionality' / 'need to increase height of supports' / 'beam may bend under own weight'

MAX 3

(d) $E \approx 10^9$

or

1.14 × 10⁹ seen 1√

for $1\checkmark$ accept 10^9 seen in working

correct manipulation seen in **body of answer** of $s = \frac{\eta m}{F} 2^{\checkmark}$

for 2√ either

substitution of their *E* and data from **Figure 8** leaving η as only unknown: allow POT in *s* but not in *m*

eg
$$\eta = \frac{\text{their } E \times 25.5 \left(\times 10^{-3} \right)}{0.25}$$
 or

substitution of their *E* and result of a gradient calculation: allow POT in Δs but not in Δm

$$eg \eta = 1.14 \times 10^9 \times 1.02 (\times 10^{-1})$$
 or

calculation involving orders of magnitude (expect 10^{-1} but allow 10^{2} for gradient)

$$eg \eta \approx 10^9 \times 10^{-1}$$

2

correct raw result (allow POT in *E*) $3\checkmark$

for $3\checkmark$ expect 1.16 × 10⁸ but allow 1 sf gradient eg leading to 1.14 × 10⁸

(on answer line) order of magnitude consistent with their raw result 4

for $4\checkmark \eta = 10^8$ or 8 only; allow use of their *E* award $34\checkmark = 1$ MAX for use of gradient ≈ 100 leading to order of magnitude = 10^{11} or 11 only

┸	

Materials

1

1

1

(e) identifies that s and L are linked by a power law \checkmark

accept any correct expression (unless there is talk-out) with s or log s as the subject; treat any quantities other than s and L as constant except E and η possible answers are: $s \propto L^n$ allow $s \propto L^m$ if m identified as constant $s \propto L^3$ $s = kL^n$ $\log s = n \log L + (\log) k$ $\log s = 3 \log L + (\log) k$ $\log s = \log L^3 + (\log) k$ reject $s = L^n$ $\log s = n \log L$ $\log s \propto n \log L$ $10^{\rm s} \propto 10^{\rm L}$'s and L are linked logarithmically' 's is directly proportional to L'

(f) $(\log L =) -0.097$ seen

for $1\checkmark$ accept any log L rounding to -0.097;

or

working on Figure 5 confirming a value of log L between -0.095 and -0.100 1 \checkmark

uses **Figure 5** to obtain *s* in range 2.9 to 3.1×10^{-2} (m) $2\checkmark$ working can be suitable ruled line or mark on the best-fit line / on graph axes for $2\checkmark$ accept 29, 30 or 31 mm etc reject 1sf 3×10^{-2} (m)

use of wrong base

 $\ln L = -0.22(3);$

uses **Figure 5** to obtain *s* in range 1.49 to 1.51×10^{-1} or 1.5×10^{-1} (m) $12\sqrt{accept \ 15 \ cm \ etc}$

	(g)	use of Figure 4 to determine $M \checkmark$	
		their (final answer to) (f) × gradient of Figure 4 (9.8 ± 2.5%) minimum 2sf	
		condone use of 1sf s	
			1 [13]
5.	С	с. <i>Е</i>	
		$\frac{p}{4}$ $\frac{E}{4}$	
			[1]
6	D		
0.			[1]
7.	(a)	Attempt to calculate weight of cage eg 1.2 × 10^3 × 9.81 or 1.18 × 10^4 seen \checkmark	
		Attempt to find vertical component of tension T_V in one rope eg 3.7 × 10 ⁴ cos20 or 3.5 × 10 ⁴ seen \checkmark	
		Uses <i>F</i> = twice their tension – their weight ✓ If weight not calculated, allow MP3 for doubling their tension or their resolved component	
		5.8×10^4 (N) \checkmark	4
	(b)	Use of $F =$ ma with 6 × 10 ⁴ N or their (a) \checkmark 50 (m s ⁻²) \checkmark	
		Allow 48 (m s ⁻²).	2
	(c)	Calculation of length of rope eg 35/cos20 or 37.2 seen ✓	
		Allow methods using $F=k\Delta L$ and $E=\mathscr{V}_2k\Delta L^2$	
		Calculation of extension of one rope or calculation of total extension of both ropes eg their length–24 or 13.2 or 26.4 seen \checkmark	
		Use of $E = \frac{1}{2} F\Delta L$ e.g. $\frac{1}{2} \times 3.7 \times 10^4 \times 13.2 = 2.44 \times 10^5$ (J) ✓	
		4.9 × 10 ⁵ (J) ✓	
			4

 (d) Use of *E* lost = Δ*E*_p eg 1.2 × 10³ × 9.81 × h = 5 × 10⁵ √ No credit for use of suvat in either method and MP3 must come from correct Physics. First method is for calculation of max *h* and comparison with 50 m.

h = 42 (m) ✓

Allow h from their (c) if it rounds to 5×10^5

42 < 50 (m), so claim not justified \checkmark

OR

Use of $\Delta E_{\rm p} = mg\Delta h$ with 50 m eg 1.2 × 10³ × 9.81 × 50 \checkmark

Second method is for calculation of ΔE_p and comparison with *E*.

 $\Delta E_{\rm p}$ = 5.9 × 10⁵ (J) \checkmark

 $5.9 \times 10^5 > 5 \times 10^5$, so claim not justified \checkmark

(e) 90 km h⁻¹ = 25 m s⁻¹ \checkmark The conversion mark stands alone.

> Use of $E_{\rm k} = \frac{1}{2} mv^2$ eg $\frac{1}{2} \times 1.2 \times 10^3 \times (\text{their } v)^2 \checkmark$

 3.8×10^5 (J) \checkmark ecf for their v

(f) If their $E_k > 5 \times 10^5$, claim is unjustified

OR

8.

If their $E_{\rm k}$ < 5 × 10⁵, claim may be justified depending on gain in $E_{\rm p}$ or losses due to resistive forces \checkmark

[17]

1

3

1

2

(a) resultant/overall/sum of force = 0 OR forces up equal forces down AND forces left equal forces right √
 (sum of) anticlockwise moments (about any point) = (sum of) clockwise moments/zero resultant moment/torque √

1 1

(b) EITHER

the point through which (the line of action of) a force has no turning effect/causes no rotation/ no torque \checkmark

OR

where the mass of the body can be considered to be concentrated OR where the weight can be considered to act \checkmark

NOT where mass can be considered to act Ignore reference to force of gravity

(c) so there is not a resultant moment/turning effect / turning force OR moments do not balance OR (beam) does not rotate / oscillate / swing ✓ about A / because A is pivot ✓

Allow moments balanced for no resultant moment

 $\begin{array}{l} T_1 = 12\ 000\ cos\ 53\ \checkmark\\ T_1 = 7200\ (7221)\ (N)\ \checkmark\\ T_2 = 12\ 000\ sin53\ \checkmark\\ T_2 = 9600\ (9583)\ (N)\ \checkmark \end{array}$

T₁

OR

 $\begin{array}{l} T_1 \cos 53 + T_2 \cos 37 = 12\ 000 \checkmark \\ T_1 \sin 53 = T_2 \sin 37 \checkmark \\ T_2 = T_1 \sin 53/\sin 37 \\ \text{hence} \\ T_1 \cos 53 + T_1 \sin 53 \cos 37/\sin 37 = 12\ 000 \\ T_1 = 7200\ (7221)\ (N) \checkmark \\ T_2 = 7221\ \sin 53/\sin 37 = 9600\ (9583)\ (N) \checkmark \\ If\ T_1 \ and\ T_2 \ are\ the\ wrong\ way\ round\ get\ 3\ out\ of\ 4 \\ If\ scale\ drawing\ 2\ max\ +/-\ 300(N) \end{array}$

If values out by a factor of 10 then -1 (i.e. confusion over g)

(e) (use of
$$\Delta I = FI/AE$$
)
 $A = \pi \times (0.75 \times 10^{-2} \times (= 1.767 \times 10^{-4} \times 200 \times 10^{9}) \checkmark$
 $\Delta I = 12000 \times 12/(1.767 \times 10^{-4} \times 200 \times 10^{9}) \checkmark$
 $A I = 4.1 \times 10^{-3} (m) \checkmark$
No attempt to calculate area scores zero
Wrong area (e.g. 6° or Znr or Zn1) maximum 1 mark unless
diameter used for radius in π^{2} then maximum 2 marks
 $Accept 4.0 \times 10^{-3}$
 $It 4 \times 10^{-3}$ then -1 as 1 sig. fig.
(12)
9. D
(a) (use of $\rho = MV$)
 $M = 4.0 \times 10^{-6} \times 220 = 3.68 \times 10^{-3} (kg) \checkmark$
weight = 3.68 $\times 10^{-3} \times 9.81 = 3.6 \times 10^{-2} (N) \checkmark$
 $Ect for second mark$
 $1 sig. fig. -1 mark$
(b) $V = 3.68 \times 10^{-3}/1000 = 3.7 (3.68) \times 10^{-6} m 3 \checkmark$
 $Ect 5.1 from mass calculation
(c) TH-REE FROM:
any mass divided by 7800 \checkmark
 $V = 3.9 \times 10^{-3} - 3.68 \times 10^{-3} \checkmark$
 $Ignore mass value if awarding first mark$
(f)
12. D
(11)
13. B
(12)$

(a) Use of
$$n_{\rm A} = \frac{c}{c_{\rm A}}$$
 to make $c_{\rm A}$ the subject of the equation
Condone truncation without appropriate rounding mid-calculation

OR

speed in glass **A** =
$$2.05(2) \times 10^8 \text{ ms}^{-1} \sqrt{10^8 \text{ ms}^{-1}}$$

Speed in glass $\mathbf{B} = 1.985(3) \times 10^8$ Condone use of $c = 3 \times 10^8$

But must see answer to 4 sf answer

OR

their speed in glass $\mathbf{A} \times 0.96748$ (or equivalent) $_2 \checkmark$

Values obtained using $c = 3 \times 10^8$:

• speed in glass $A = 2.05(3) \times 10^8 \text{ ms}^{-1}$

• speed in glass
$$B = 1.98(7) \times 10^8$$

OR

Alternative 1st and 2nd marks

Use of $n_A/n_B = c_B/c_A$ by substitution for $n_{A,1}$

Use of $n_A/n_B = c_B/c_A$ by substitution for n_A and $c_B = c_A \times 0.96748 \ _2\checkmark$

OR

 $n_{\rm B}$ = 1.461 / 0.96748 $_1 \checkmark_2 \checkmark$ Watch for maths errors: Dividing by 1.03252 ≠ multiplying by 0.96748 Multiplying by 1.03252 ≠ dividing by 0.96748

1.510 cao to 4 sf only $_3\checkmark$

Correct answer to 4 sf obtains all 3 marks Penalise any unit on final answer

3

(b) Relationship:

Increase in tension (or stress) in cable produces increase in strain resulting in increase in λ_{R}

OR

Decrease in tension (or stress) causes decrease in strain resulting in decrease in λ_{R1}

Variation due to motion:

As the lift accelerates downwards, (the tension is less than the weight in the cable, a decrease in tension results) in λ_R decreasing $_2 \checkmark$

At constant velocity (the tension again equals the weight and) λ_R returns to the initial, at rest value $_3 \checkmark$

Allow a correct comment on the directional relationship between tension, strain and λ_R independent of the motion of the lift for first mark

(c) **P** because it will produce a larger increase in λ_R for the (same) <u>increase</u> in strain

OR

P because it has a larger gradient (must be a sense of larger increase in λ_R for the (same) increase in strain) \checkmark

Hence <u>smaller accelerations</u> (which produce small changes in strain) can produce <u>measurable changes in λ_R </u>

OR

Hence gauge **P** will have a higher resolution \checkmark

Selecting Q gains zero marks Linking steeper gradient to being able to withstand a larger force negates this mark Allow more accurate measurement of <u>acceleration</u> Allow more readings of <u>acceleration</u> can be taken (over the range) More sensitive treat as neutral

го

2

[8]

16. C

15.

В

[1]

[1]

17.

(a) EITHER

calculate value for constant using two calculations \checkmark

calculate value for constant using three calculations and make a comment that they have same value \checkmark

need to see table to look for any working

OR

calculate ratio between masses and \sqrt{T} for one pair of values \checkmark

calculate ratio between masses and \sqrt{T} for two pairs of values and make comment about same value \checkmark

OR

work out constant and use to predict one other frequency or mass \checkmark

work out constant and use to predict two other frequencies or mass \checkmark

no comment needed with this alternative

(b)
$$\mu = \rho A = 1150 \times \pi (5.0 \times 10^{-4}/2)^2$$

 μ = 2.258 × 10⁻⁴ (kg m⁻¹) \checkmark

use of consistent *m* and *f* Substituted in $f = \frac{1}{21} \sqrt{\frac{T}{\mu}}$ including g but

condone powers of 10 error \checkmark

Award second mark if T and f substituted correctly (ignore μ)

0.67 m 🗸

If used diameter for radius incorrectly then lose first mark but can get third mark (answer 0.335 m)

3

2

(c) appreciation of reducing diameter when string is stretched. \checkmark

lower mass per unit length so (constant of proportionality and hence) frequency is higher (than would be predicted) \checkmark

2

[7]

Materials

- $(\text{using } E_k = \frac{1}{2} mv^2)$ (b) (i) $2.2 = \frac{1}{2} \times 0.40 \times v^2$ $v = 3.3 \text{ (ms}^{-1}) \checkmark$ Ignore errors in 3 sig fig. Answer only can gain mark. 1 (ii) (using work done = $F \times s$) 2.2 = $F \times 1.2 \checkmark (F = 1.83 \text{ N})$ or $(\text{using } a = (v^2 - u^2) / 2 s)$ $a = (0^2 - 3.32^2) / 2 \times 1.2 = (-) 4.59 \text{ (m s}^{-1})$ $(F = ma) = 0.4 \times 4.59 \checkmark = (1.84 \text{ N})$ A substitution of numbers are necessary for the mark 1 (work done in moving 0.2 m) = 1.8×0.2 (J) \checkmark (= 0.36 J) (iii) (allow ecf (bii) \times 0.2) total work done = $2.2 + 0.36 = 2.6 \checkmark$ (same answer is achieved if F = 2N)
 - (iv) (use of energy = $\frac{1}{2} F x$) $2.6 = \frac{1}{2} F_{max} 0.2$ $F_{max} = 26 \text{ N } \checkmark$ (allow ecf 10 × (biii)) *Allow mark for answer only even for ecf.*

J or joule √

[8]

1