Mark schemes

1. (a) correctly deduces extension is 2.6 or $2.7 \mathrm{~mm} \checkmark$

Should see $A C^{2}=1.50^{2}+\left(6.34 \times 10^{-2}\right)^{2}$;
(new) $A C=1.50134$;
Extension of $A C=(1.50134-1.50=) 0.00134 \mathrm{~m}$ or 1.34 mm ; and then doubles this

Final value must be to at least 2 sf
(b) evidence of correct working: \checkmark
$\sin \theta=\frac{6.34 \times 10^{-2}}{\text { their new AC }} \quad$ or $\theta=2.42^{\circ}$ seen
OR
$W=2 T \sin \theta$ seen
OR
suitable vector diagram with θ labelled
tension correctly calculated from $\frac{1.0}{2 \times \text { their } \sin \theta} \checkmark$
For ${ }_{1} \sqrt{ }$ acceptable diagrams are shown below

Correct final answer of 11.8 N or 12 N earns both marks
(c) ruled best-fit line between first and sixth points;
line must pass above $2^{\text {nd }}$ point
and
must pass below $4^{\text {th }}$ point ${ }_{1} \checkmark$ for ${ }_{1} \sqrt{ }$ withhold mark if line is thick, faint or discontinuous
gradient calculated from $\frac{\Delta(W / y)}{\Delta y^{2}}$ with $\Delta y^{2} \geq 0.004{ }_{2} \checkmark$
(gradient ~ 3850)
for ${ }_{2} \sqrt{ }$ condone read off errors of ± 1 division
for ${ }_{3} \checkmark$ note that $1.50^{3}=3.375$ so allow sub of 3.38
for ${ }_{4} \checkmark$ reject 2 sf 1.2×10^{11}
evidence of using $E=\frac{\text { their gradient } \times 1.50^{3}}{1.11 \times 10^{-7}}{ }_{3} \checkmark$
for ${ }_{3} \checkmark$ note that $1.50^{3}=3.375$ so allow sub of 3.38
E in range 1.10×10^{11} to $1.24 \times 10^{11}(\mathrm{~Pa})_{4} \checkmark$
for ${ }_{4} \sqrt{ }$ reject 2 sf 1.2×10^{11}
(d) $\mathrm{kg} \mathrm{s}^{-2} \checkmark$
no credit for Nm^{-1}
correct answer only
2. A

$$
\frac{m g \Delta L}{2}
$$

3. A

$$
\frac{F \rho L^{2}}{m \Delta L}
$$

4. (a) 37.8V

CAO
(b) random (error) condone 'statistical' \checkmark
the following are neutral:
'parallax' / 'human (error)'/ '(some) results are anomalous'
(c) advantage (of using thinner beam):
(same load produces) larger (values of) s or wtte $1 \checkmark$
so
the percentage uncertainty / error (in s) is reduced $2 \sqrt{ }$
for $1 \sqrt{ }$ accept 'beam bends / deflects more'
'beam extends more' / 'easier to bend' are neutral
for $2 \sqrt{ }$ the following are neutral:
'easier to make readings' / 'values (of s) are more accurate'/ 'more precise' / 'less mass needed' / 'wider range of readings'
disadvantage (of beam bending more):
idea that beam may undergo plastic deformation $3 \checkmark$
so
the graph will be non-linear / curve or wtte $4 \sqrt{ }$
or
beam 'may break' / 'slip off knife edges' and relevant comment about safety / health / hazard / 'cannot get unload data'
or
reduces range of m or wtte and relevant comment about the effect on the graph, eg increase scatter $34 \sqrt{ }=1 \mathrm{MAX}$
for $3 \sqrt{ }$ accept / 'beam may become permanently deformed' or wtte / 'necking may occur' / 'hysteresis may occur' / 'beam can reach (go past) elastic limit'
the following are neutral:
'causes systematic error' / 'beam may go past limit of proportionality' / 'need to increase height of supports' / 'beam may bend under own weight'
(d) $E \approx 10^{9}$
or
1.14×10^{9} seen $1 \checkmark$
for $1 \checkmark$ accept 10^{9} seen in working
correct manipulation seen in body of answer of $s=\frac{\eta m}{E}{ }_{2}$
for $2 \sqrt{ }$ either
substitution of their E and data from Figure 8
leaving η as only unknown: allow POT in s but not in m
eg $\eta=\frac{\text { their } E \times 25.5\left(\times 10^{-3}\right)}{0.25}$ or
substitution of their E and result of a gradient calculation: allow POT in Δs but not in Δm
eg $\eta=1.14 \times 10^{9} \times 1.02\left(\times 10^{-1}\right)$ or
calculation involving orders of magnitude (expect 10^{-1} but allow 10^{2} for gradient)
$e g \eta \approx 10^{9} \times 10^{-1}$
correct raw result (allow POT in E) $3 \checkmark$
for $3 \checkmark$ expect 1.16×10^{8} but allow 1 sf gradient eg leading to 1.14×10^{8}
(on answer line) order of magnitude consistent with their raw result $4 \checkmark$ for $4 \sqrt{ } \eta=10^{8}$ or 8 only; allow use of their E award $34 \sqrt{ }=1$ MAX for use of gradient ≈ 100
leading to order of magnitude $=10^{11}$ or 11 only
(e) identifies that s and L are linked by a power law \checkmark
accept any correct expression (unless there is talk-out) with s or log s as the subject;
treat any quantities other than s and L as constant except E and η possible answers are:
$s \propto L^{n}$
allow $s \propto L^{m}$ if m identified as constant
$s \propto L^{3}$
$s=k L^{n}$
$\log s=n \log L+(\log) k$
$\log s=3 \log L+(\log) k$
$\log s=\log L^{3}+(\log) k$
reject
$s=L^{n}$
$\log s=n \log L$
$\log s \propto n \log L$
$10^{s} \propto 10^{L}$
's and L are linked logarithmically'
' s is directly proportional to L '
(f) $\quad(\log L=)-0.097$ seen
for $1 \sqrt{ }$ accept any $\log L$ rounding to -0.097 ;
or
working on Figure 5 confirming a value of $\log L$ between -0.095 and $-0.1001 \checkmark$ uses Figure 5 to obtain s in range 2.9 to $3.1 \times 10^{-2}(\mathrm{~m}) 2 \sqrt{ }$ working can be suitable ruled line or mark on the best-fit line / on graph axes for $2 \sqrt{ }$ accept 29, 30 or 31 mm etc reject $1 \mathrm{sf} 3 \times 10^{-2}(\mathrm{~m})$
use of wrong base
$\ln L=-0.22(3)$;
uses Figure 5 to obtain s in range 1.49 to 1.51×10^{-1} or $1.5 \times 10^{-1}(\mathrm{~m}) 12 \checkmark$ accept 15 cm etc
(g) use of Figure 4 to determine $M \checkmark$
their (final answer to) (f) \times gradient of Figure 4 ($9.8 \pm 2.5 \%$)
minimum 2sf
condone use of 1sfs
[13]
5. C $\frac{\rho}{4} \quad \frac{E}{4}$
6. D
7. (a) Attempt to calculate weight of cage eg $1.2 \times 10^{3} \times 9.81$ or 1.18×10^{4} seen \checkmark

Attempt to find vertical component of tension T_{V} in one rope
eg $3.7 \times 10^{4} \cos 20$ or 3.5×10^{4} seen \checkmark
Uses $F=$ twice their tension - their weight \checkmark
If weight not calculated, allow MP3 for doubling their tension or their resolved component
$5.8 \times 10^{4}(\mathrm{~N}) \checkmark$
(b) Use of $F=$ ma with $6 \times 10^{4} \mathrm{~N}$ or their (a) \checkmark $50\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \checkmark$ Allow 48 ($\mathrm{m} \mathrm{s}^{-2}$).
(c) Calculation of length of rope eg 35/cos20 or 37.2 seen \checkmark

Allow methods using $F=k \Delta L$ and $E=1 / 2 k \Delta L^{2}$
Calculation of extension of one rope or calculation of total extension of both ropes eg their length-24 or 13.2 or 26.4 seen $\sqrt{ }$

Use of $E=1 / 2 F \Delta L$
e.g. $1 / 2 \times 3.7 \times 10^{4} \times 13.2=2.44 \times 10^{5}(\mathrm{~J}) \checkmark$
$4.9 \times 10^{5}(\mathrm{~J}) \checkmark$
(d) Use of E lost $=\Delta E_{\mathrm{p}}$
eg $1.2 \times 10^{3} \times 9.81 \times \mathrm{h}=5 \times 10^{5} \checkmark$
No credit for use of suvat in either method and MP3 must come from correct Physics.

First method is for calculation of max h and comparison with 50 m .
$h=42(\mathrm{~m}) \checkmark$
Allow h from their (c) if it rounds to 5×10^{5}
$42<50(\mathrm{~m})$, so claim not justified \checkmark
OR
Use of $\Delta E_{\mathrm{p}}=m g \Delta h$ with 50 m
eg $1.2 \times 10^{3} \times 9.81 \times 50 \checkmark$
Second method is for calculation of ΔE_{p} and comparison with E.
$\Delta E_{\mathrm{p}}=5.9 \times 10^{5}(\mathrm{~J}) \checkmark$
$5.9 \times 10^{5}>5 \times 10^{5}$, so claim not justified \checkmark
(e) $90 \mathrm{~km} \mathrm{~h}^{-1}=25 \mathrm{~m} \mathrm{~s}^{-1} \checkmark$

The conversion mark stands alone.

Use of $E_{\mathrm{k}}=1 / 2 m v^{2}$
eg $1 / 2 \times 1.2 \times 10^{3} \times(\text { their } v)^{2} \checkmark$
$3.8 \times 10^{5}(\mathrm{~J}) \checkmark$
ecf for their v
(f) If their $E_{\mathrm{k}}>5 \times 10^{5}$, claim is unjustified

OR

If their $E_{\mathrm{k}}<5 \times 10^{5}$, claim may be justified depending on gain in E_{p} or losses due to resistive forces \checkmark
8. (a) resultant/overall/sum of force $=0$ OR forces up equal forces down AND forces left equal forces right \checkmark
(sum of) anticlockwise moments (about any point) = (sum of) clockwise moments/zero resultant moment/torque \checkmark
(b) EITHER
the point through which (the line of action of) a force has no turning effect/causes no rotation/ no torque \checkmark
OR
where the mass of the body can be considered to be concentrated OR where the weight can be considered to act \checkmark

NOT where mass can be considered to act Ignore reference to force of gravity
(c) so there is not a resultant moment/turning effect / turning force OR moments do not balance OR (beam) does not rotate / oscillate / swing \checkmark about A / because A is pivot \checkmark

Allow moments balanced for no resultant moment
(d)

T1
$T_{1}=12000 \cos 53 \checkmark$
$\mathrm{T}_{1}=7200$ (7221) (N) \checkmark
$\mathrm{T}_{2}=12000 \sin 53 \mathrm{~V}$
$\mathrm{T}_{2}=9600(9583)(\mathrm{N}) \checkmark$
OR
$\mathrm{T}_{1} \cos 53+\mathrm{T}_{2} \cos 37=12000 \checkmark$
$\mathrm{T}_{1} \sin 53=\mathrm{T}_{2} \sin 37 \mathrm{~J}$
$T_{2}=T_{1} \sin 53 / \sin 37$
hence
$\mathrm{T}_{1} \cos 53+\mathrm{T}_{1} \sin 53 \cos 37 / \sin 37=12000$
$\mathrm{T}_{1}=7200$ (7221) (N) \checkmark
$\mathrm{T}_{2}=7221 \sin 53 / \sin 37=9600(9583)(\mathrm{N}) \checkmark$
If T_{1} and T_{2} are the wrong way round get 3 out of 4
If scale drawing 2 max +/-300(N)
If values out by a factor of 10 then -1 (i.e. confusion over g)
(e) (use of $\Delta I=\mathrm{FI} / \mathrm{AE}$)
$\mathrm{A}=\pi \times\left(0.75 \times 10^{-2}\right)^{2} \checkmark\left(=1.767 \times 10^{-4}\right)$
$\Delta I=12000 \times 12 /\left(1.767 \times 10^{-4} \times 200 \times 10^{9}\right) \checkmark$
$\Delta I=4.1 \times 10^{-3}(\mathrm{~m}) \checkmark$
No attempt to calculate area scores zero
Wrong area (e.g. d^{2} or $2 \pi r$ or $2 \pi r l$) maximum 1 mark unless
diameter used for radius in πr^{2} then maximum 2 marks
Accept 4.0×10^{-3}
If 4×10^{-3} then -1 as 1 sig. fig.
9. D
10. B
11. (a) (use of $\rho=M / M$)
$\mathrm{M}=4.0 \times 10^{-6} \times 920=3.68 \times 10^{-3}(\mathrm{~kg}) \checkmark$
weight $=3.68 \times 10^{-3} \times 9.81=3.6 \times 10^{-2}(\mathrm{~N}) \checkmark$
Ecf for second mark
1 sig.fig. - 1 mark
(b) $\quad V=3.68 \times 10^{-3} / 1000=3.7(3.68) \times 10^{-6} \mathrm{~m} 3 \checkmark$

Ecf 5.1 from mass calculation
(c) THREE FROM:
any mass divided by $7800 \checkmark$
$\mathrm{V} \times 7800+\left(4.0 \times 10^{-6}-\mathrm{V}\right) \times 920=3.9 \times 10^{-3} \checkmark$
$6880 \mathrm{~V}=3.9 \times 10^{-3}-3.68 \times 10^{-3} \mathrm{~V}$
$V=3.2 \times 10^{-8} \mathrm{~m}^{3} \checkmark$ Ignore mass value if awarding first mark
12.
13.
14. (a) Use of $n_{\mathrm{A}}=\frac{\mathrm{c}}{c_{\mathrm{A}}}$ to make c_{A} the subject of the equation Condone truncation without appropriate rounding mid-calculation

OR

```
speed in glass A=2.05(2) \times 108 ms 
Speed in glass B = 1.985(3) \times 108
    Condone use of c=3 = 108
    But must see answer to 4 sf answer
```


OR

their speed in glass $\mathbf{A} \times 0.96748$ (or equivalent) ${ }_{2} \sqrt{ }$
Values obtained using $c=3 \times 10^{8}$:

- speed in glass $A=2.05(3) \times 10^{8} \mathrm{~ms}^{-1}$
- speed in glass $B=1.98(7) \times 10^{8}$
- $n=1.510$

OR

Alternative 1st and 2nd marks
Use of $n_{\mathrm{A}} / n_{\mathrm{B}}=c_{\mathrm{B}} / c_{\mathrm{A}}$ by substitution for $n_{\mathrm{A}} \downarrow$
Use of $n_{\mathrm{A}} / n_{\mathrm{B}}=c_{\mathrm{B}} / c_{\mathrm{A}}$ by substitution for n_{A} and $c_{\mathrm{B}}=c_{\mathrm{A}} \times 0.96748{ }_{2} \sqrt{ }$
OR
$n_{B}=1.461 / 0.96748{ }_{1} \sqrt{ } \sqrt{ } \sqrt{ }$
Watch for maths errors:
Dividing by $1.03252 \neq$ multiplying by 0.96748
Multiplying by $1.03252 \neq$ dividing by 0.96748
1.510 cao to 4 sf only ${ }_{3} \sqrt{ }$

Correct answer to 4 sf obtains all 3 marks
Penalise any unit on final answer
(b) Relationship:

Increase in tension (or stress) in cable produces increase in strain resulting in increase in λ_{R}

OR

Decrease in tension (or stress) causes decrease in strain resulting in decrease in $\lambda_{R} \downarrow$

Variation due to motion:

As the lift accelerates downwards, (the tension is less than the weight in the cable, a decrease in tension results) in λ_{R} decreasing ${ }_{2} \checkmark$

At constant velocity (the tension again equals the weight and) λ_{R} returns to the initial, at rest value ${ }_{3} \checkmark$

Allow a correct comment on the directional relationship between tension, strain and λ_{R} independent of the motion of the lift for first mark
(c) \mathbf{P} because it will produce a larger increase in λ_{R} for the (same) increase in strain

OR

\mathbf{P} because it has a larger gradient (must be a sense of larger increase in λ_{R} for the (same) increase in strain) \checkmark

Hence smaller accelerations (which produce small changes in strain) can produce measurable changes in λ_{B}

OR

Hence gauge \mathbf{P} will have a higher resolution \checkmark
Selecting Q gains zero marks
Linking steeper gradient to being able to withstand a larger force negates this mark
Allow more accurate measurement of acceleration
Allow more readings of acceleration can be taken (over the range)
More sensitive treat as neutral
15. B
16.
(a) EITHER
calculate value for constant using two calculations \checkmark
calculate value for constant using three calculations and make a comment that they have same value \checkmark
need to see table to look for any working
OR
calculate ratio between masses and $\sqrt{ } T$ for one pair of values \checkmark calculate ratio between masses and $\sqrt{ } T$ for two pairs of values and make comment about same value \checkmark

$$
\text { e.g. } 0.5 / 0.8=\sqrt{ } 110 / \sqrt{ } 140
$$

OR
work out constant and use to predict one other frequency or mass \checkmark
work out constant and use to predict two other frequencies or mass \checkmark
no comment needed with this alternative
(b) $\quad \mu=\rho A=1150 \times \pi\left(5.0 \times 10^{-4} / 2\right)^{2}$
$\mu=2.258 \times 10^{-4}\left(\mathrm{~kg} \mathrm{~m}^{-1}\right) \checkmark$
use of consistent m and f Substituted in $f=\frac{1}{2 l} \sqrt{\frac{T}{\mu}}$ including g but condone powers of 10 error \checkmark

Award second mark if T and f substituted correctly (ignore μ)
0.67 m V

If used diameter for radius incorrectly then lose first mark but can get third mark (answer 0.335 m)
18. (a) energy cannot be created or destroyed \checkmark
it can only be transferred / changed / converted from one form to another \checkmark
Transformed' can be taken to mean transferred from one form to another.
(b) (i) (using $\left.E_{k}=1 / 2 m v^{2}\right)$ $2.2=1 / 2 \times 0.40 \times v^{2}$ $v=3.3\left(\mathrm{~ms}^{-1}\right) \checkmark$

Ignore errors in 3 sig fig.
Answer only can gain mark.
(ii) (using work done $=F \times s) 2.2=F \times 1.2 \checkmark(F=1.83 \mathrm{~N})$ or (using $a=\left(v^{2}-u^{2}\right) / 2 s$)
$\mathrm{a}=\left(0^{2}-3.32^{2}\right) / 2 \times 1.2=(-) 4.59\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$
$(F=m a)=0.4 \times 4.59 \checkmark=(1.84 \mathrm{~N})$
A substitution of numbers are necessary for the mark
(iii) (work done in moving 0.2 m$)=1.8 \times 0.2(\mathrm{~J}) \checkmark(=0.36 \mathrm{~J})$ (allow ecf (bii) $\times 0.2$)
total work done $=2.2+0.36=2.6 \checkmark$ (same answer is achieved if $F=2 \mathrm{~N}$)
J or joule \checkmark
(iv) (use of energy $=1 / 2 F x$)
$2.6=1 / 2 F_{\text {max }} 0.2$
$F_{\max }=26 \mathrm{~N}$,
(allow ecf $10 \times$ (biii))
Allow mark for answer only even for ecf.

